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Introduction



Trimming to Improve Balance in Covariate Distributions

• Trimming the sample by discarding units with propensity score values

close to zero or one, with the exact threshold determined by the joint

distribution of covariates and treatment status in order to optimize

asymptotic precision

• A covariate-and-treatment-indicator-dependent criterion for determining a

threshold, denoted by α, such that all units with estimated propensity

score values in the intervals [0, α] and [1− α, 1] are discarded, and causal

effects are estimated only for units with values for the estimated

propensity score in the interval [α, 1− α]
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covariate



An example with a single binary covariate

Notations:

• Xi : a single pre-treatment variable taking on two values

(e.g., Xi = x , x ∈ {f ,m})

• Wi : the observed treatment indicator for unit i (Wi ∈ {0, 1})

• N: the number of a random sample from an infinite super-population

• N(x): the sample size for the subsample with Xi = x

(e.g .,N = N(f ) + N(m), N(x) =
N∑

i=1

I(Xi = x))

• q: the super-population share of Xi = m units

(q = Esp[N(m)/N])
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An example with a single binary covariate

• The population average treatment effect conditional on Xi = x :

τsp(x) = Esp[Yi (1)− Yi (0)|Xi = x ]

• The super-population average treatment effect:

τsp = Esp[Yi (1)− Yi (0)] = (1− q) · τsp(f ) + q · τsp(m)

• The number of control and treated units with covariate value Xi = x :

Nc (x) =
∑

i :Xi=x

(1−Wi ) and Nt(x) =
∑

i :Xi=x

Wi

• The propensity score at x : e(x) = Nt(x)/N(x)

• The average outcome within each of the four subpopulations defined by

treatment status and covariate value:

Ȳ obs
c (x) = 1

Nc (x)

∑
i :Xi=x

Y obs
i · (1−Wi ) and

Ȳ obs
t (x) = 1

Nt (x)

∑
i :Xi=x

Y obs
i ·Wi , for x = f ,m
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An example with a single binary covariate

Assume that the super-population variance of Yi (w) given Xi = x is σ2 for all

x and w .

Natural estimators for the average treatment effects for each of the two

subpopulations, Xi = f ,m:

τ̂ dif (f ) = Ȳ obs
t (f )− Ȳ obs

c (f ) and τ̂ dif (m) = Ȳ obs
t (m)− Ȳ obs

c (m).

Then the asymptotic sampling variance:

N ·V
(
τ̂ dif (f )

)
= N · σ2 ·

(
1

Nc (f )
+ 1

Nt (f )

)
−→ σ2

(1−q)
· 1

e(f )·(1−e(f ))
= AV

(
τ̂ dif (f )

)
,

N ·V
(
τ̂ dif (m)

)
= N ·σ2 ·

(
1

Nc (m)
+ 1

Nt (m)

)
−→ σ2

q
· 1

e(m)·(1−e(m))
= AV

(
τ̂ dif (m)

)
.
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An example with a single binary covariate

Natural estimator for the population average treatment effect,

τsp = Esp[Yi (1)− Yi (0)]:

τ̂ strat = N(f )
N(f )+N(m)

· τ̂ dif (f ) + N(m)
N(f )+N(m)

· τ̂ dif (m).

Since τ̂ dif (f ) and τ̂ dif (m) are independent, the sampling variance of the

population average treatment effect:

V
(
τ̂ strat

)
=
(

N(f )
N(f )+N(m)

)2
· V
(
τ̂ dif (f )

)
+
(

N(m)
N(f )+N(m)

)2
· V
(
τ̂ dif (m)

)
.

Thus, the normalized sampling variance for τ̂ converges to

N · V
(
τ̂ strat

)
−→ σ2 ·

(
q

e(m)·(1−e(m))
+ 1−q

e(f )·(1−e(f ))

)
= AV

(
τ̂ strat

)
.
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An example with a single binary covariate

Suppose that e(m)·(1−e(m))
e(f )·(1−e(f ))

≤ 1−q
1−2·q . Then,

AV
(
τ̂ dif (f )

)
≤ AV

(
τ̂ strat

)
≤ AV

(
τ̂ dif (m)

)
.

On the other hand, if, 1+q
q
≤ e(m)·(1−e(m))

e(f )·(1−e(f ))
, then

AV
(
τ̂ dif (m)

)
≤ AV

(
τ̂ strat

)
≤ AV

(
τ̂ dif (f )

)
.

Otherwise, i.e., 1−q
1−2·q <

e(m)·(1−e(m))
e(f )·(1−e(f ))

< 1+q
q

, then

AV
(
τ̂ strat

)
≤ min

(
AV
(
τ̂ dif (m)

)
,AV

(
τ̂ dif (f )

))
.
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An example with a single binary covariate

The general idea behind the trimming approach is based on the estimation of

average effects for a subpopulation of units with Xi ∈ C:

τC = Esp[Yi (1)− Yi (0)|Xi ∈ C],

for a subset of the covariate space, C ⊂ X.

We look for an optimal subset C∗ of the covariate space X where the average

treatment effect is most precisely estimable.

• covariate space X = {f ,m}

• the set of possible subsets of X is {{f ,m}, {f }, {m}, ∅}
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An example with a single binary covariate

Choose the subset C∗ of the covariate space as

C∗ =


{f }, if e(m)·(1−e(m))

e(f )·(1−e(f ))
≤ 1−q

1−2·q ,

{m}, if 1+q
q
≤ e(m)·(1−e(m))

e(f )·(1−e(f ))
,

{f ,m}, otherwise.

We then discard all units with Xi /∈ C∗, and thus focus on estimating

τC∗ = Esp[Yi (1)− Yi (0)|Xi ∈ C∗],

based solely on the subsample of units with Xi ∈ C∗.
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Selecting a subsample based on the propensity score

• Now let us look at the general case, which allows for multi-component and

continuous covariates

• We cannot simply list all subsets of the covariate space and compare

within-subset sampling variances because there are infinitely many such

subsets

• For a given subset, we cannot even calculate the exact sampling variance

the way we did for the binary covariate case

• We focus on the asymptotic sampling variance for the efficient estimator

for the average treatment effect for each subset
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Selecting a subsample based on the propensity score

The asymptotic sampling variance for the efficient estimator normalized by the

sample size:

AVeff
fs = Esp

[
σ2

t (Xi )

e(Xi )
+

σ2
c (Xi )

1−e(Xi )

]
,

for the finite-sample average treatment effect τfs .

If the propensity score is close to zero or one, the sampling variance bound will

be relatively large. Therefore, dropping units for which the propensity score

is close to zero or one may improve to estimate average treatment effects.
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Selecting a subsample based on the propensity score

The average treatment effect given that the covariate value X in some subset

C of the covariate space:

τC = Esp[τ(Xi )|Xi ∈ C]

The asymptotic sampling variance of the efficient estimator for this average

treatment effect normalized by the sample size N:

AVeff
fs (C) = 1

q(C) · Esp

[
σ2

t (Xi )

e(Xi )
+

σ2
c (Xi )

1−e(Xi )

∣∣∣X ∈ C
]
, (�)

where q(C) = Prsp(Xi ∈ C) is the probability of the covariate being in the

subset C in the super-population (i.e., the effective sample size).

=⇒ The question is how to minimize equation (�).
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Selecting a subsample based on the propensity score

If we assume homoskedasticity, V(Yi (w)|Xi = x) = σ2, for all w and x , the

optimal sampling variance:

AVeff
fs (C) = σ2

q(C) · Esp

[
1

e(Xi )
+ 1

1−e(Xi )

∣∣∣X ∈ C
]
.

Now we look for the optimal subset C∗ which is the set C such that minimizes

the asymptotic sampling variance among all subsets C of X.
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Selecting a subsample based on the propensity score

– If sup
x∈X

1
e(x)·(1−e(x))

≤ 2 · Esp

[
1

e(Xi )·(1−e(Xi ))

]
, then the optimal C is equal to the

entire covariate space, C∗ = X.

– Otherwise, the optimal set C∗ has the form C∗ = {x ∈ X|α ≤ e(x) ≤ 1−α},

where the threshold α = 1
2
−
√

1
4
− 1

γ
, where γ is a solution to

γ = 2 · Esp

[
1

e(Xi )·(1−e(Xi ))

∣∣∣ 1
e(Xi )·(1−e(Xi ))

≤ γ
]
.

14



Selecting a subsample based on the propensity score

To implement this procedure we conduct the following calculations.

(1) Estimate the propensity score using the methods in ch.13

(2) Given the estimated propensity score ê(x), we check whether

max
i :1,··· ,N

1
ê(Xi )·(1−ê(Xi ))

≤ 2 · 1
N

N∑
i=1

1
ê(Xi )·(1−ê(Xi ))

(3) If the inequality holds, then Ĉ = X

(3′-1) If the inequality does not hold, then solve for a value of γ, denoted by γ̂,

satisfying

γ
N

N∑
i=1

1(ê(Xi )·(1−ê(Xi )))
−1≤γ = 2

N

N∑
i=1

1
ê(Xi )·(1−ê(Xi ))

1(ê(Xi )·(1−ê(Xi )))
−1≤γ

(3′-2) Calculate α̂ = 1/2−
√

1/4− 1/γ̂ and Ĉ = {x ∈ X| α̂ ≤ ê(x) ≤ 1− α̂}

(3′-3) Exclude units i with ê(Xi ) outside Ĉ
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